Compression and Error Checking

What is Compression? Why is it useful?

Compression

- Resources are expensive
 - Storage space
 - Transmission bandwidth
 - Time to read/send
- Does require more computation; can be a tradeoff

Run Length Encoding

- Find "runs" (repeated sequences) in data
- Replace them with a shorter version
- Usually the sequence and a count

RLE Example

RLE Example

WWWWWWWWWWWWWWW

WWWWWWWBBBWWWWW

WBWWWWWWWWWWWWW

12W1B12W3B24W1B15W

Wait, isn't text just numbers (ASCII)?

How can we tell which numbers are text and which are not?

RLE Example

Escape Coding

WWWWWWWWWWWWWWW

WWWWWWWBBBWWWWW

WBWWWWWWWWWWWWW

WW12BWW12BB3WW24BWW15

Huffman Coding

- Count the occurrences of each character
- Make a binary tree with the data
- The paths of the tree give the codes

THIS IS AN EXAMPLE OF A HUFFMAN TREE

288 bits (8 * 36)

THIS IS AN EXAMPLE OF A HUFFMAN TREE

•space: 7

•a: 4

•e: 4

•f: 3

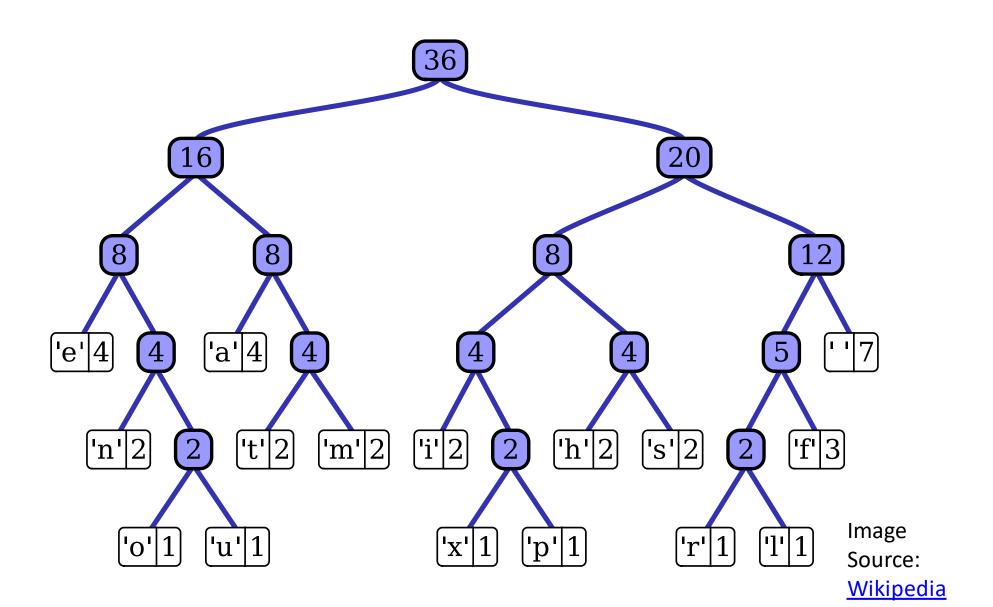
•h: 2

•i: 2

•m: 2

•n: 2

.



```
THIS IS AN EXAMPLE OF
A HUFFMAN TREE
0110 1010 1000 1011
111 1000 1011 111
010 0010 111 000 10010
... (135 bits)
```


What is Error Checking? Why is it useful?

Intuition - Squeezing

Hello there

Helbthee

Hello ghere

Helbogne

Simple - Addition

```
Hello there
72 101 108 108 111 32
116 104 101 114 101 33
= 1101
```

Simple - Addition

- If we only have the sum, can we recover the original?
- How well does this detect errors?
- Are there errors it cannot detect?
- 1101 is larger than 8 bits. How should we handle that?
- Can we do better?

Better - Pinpoint

4837543622563997				
4	8	3	7	?
5	4	3	6	?
2	2	5	6	?
3	9	9	7	?
?	?	?	?	

Better - Pinpoint

4	8	3	7	2
5	4	3	6	8
2	2	5	6	5
3	9	9	7	8
4	3	0	6	

483725436822565399784306

Better - Pinpoint

483725436827565399784306					
4	8	3	7	2	2
5	4	3	6	8	8
2	7	5	6	5	0
3	9	9	7	8	8
4	3	0	6		
4	8	0	6		

Better – Fletcher's Checksum

```
INPUT: a data word (e.g., a sequence of ASCII-numbers)
OUTPUT: two checksums for the word, each sized to fit in one byte
ALGORITHM:
```

- 1. divide the Word into a sequence of equally-sized blocks, $b_1 \ b_2 \ \dots \ b_n$
- 2. define two checksums, starting at C1 = 0 and C2 = 0
- 3. for each block, b_i , add b_i to C1 add the new value of C1 to C2
- 4. compute Checksum1 = C1 mod 255 and Checksum2 = C2 mod 255
- 5. return Checksum1 and Checksum2

Better – Fletcher's Checksum

72 101 108 108 111 32 116 104 101 114 101 33

Block	C1	C2	
72	72	72	
101	173	245	
108	281	526	
108	389	915	
Total:	1101 (81)	7336 (196)	

Testing Fletcher's

- 72 101 108
- 72 108 101
- 74 99 108
- 72 101 0 108

Which ones does it catch?

Can we do better?

Cyclic Redundancy Check (CRC)

```
Input: 010100001001
Check: 1011
    010100001001
XOR 1011
        10001001
    XOR 1011
        00111001
      XOR 1011
           10101
       XOR 1011
   Checksum: 011
```

Hash Codes

```
Choose a "hash base", b (e.g., b= 2 or b= 10 or b= 37)

For a word of integers of length n+1:

w = x_0 x_1 x_2 \dots x_{n-1} x_n,

Compute this hash number:

hash(w) = (x_0 * b^n) + (x_1 * b^{n-1}) + (x_2 * b^{n-2}) + \dots

(x_{n-1} * b^1) + x_n
```

Hash Codes

```
For word = 456,
when b = 10,
     hash (word) = (4 * 10^2) + (5 * 10^1) + 6 =
    400 + 50 + 6 = 456
when b = 100,
     hash (word) = (4 * 100^2) + (5 * 100^1) + 6 =
     40000 + 500 + 6 = 40506
when b = 5,
    hash (word) = (4 * 5^2) + (5 * 5^1) + 6 =
    100 + 20 + 6 = 126
when b = 2,
    hash(word) = 16 + 10 + 6 = 32
when b = 1,
     hash(word) = 4 + 5 + 6 = 15
```

Hash Codes

```
For word = 12 \ 33 \ 08,
when b = 10,
     hash (word) = (12 * 10^2) + (33 * 10^1) + 8 =
    1200 + 330 + 8 = 1538
when b = 100,
     hash (word) = (12 * 100^2) + (33 * 100^1) + 8 =
    120000 + 3300 + 8 = 123308
when b = 5,
     hash (word) = (12 * 5^2) + (33 * 5^1) + 8 =
    300 + 165 + 8 = 473
when b = 2,
    hash(word) = 48 + 66 + 8 = 122
```

Hamming Codes

```
BIT#: 1 2 3 4 5 6 7
PURPOSE: P<sub>3,5,7</sub> P<sub>3,6,7</sub> D P<sub>5,6,7</sub> D D D
where D is a data bit, and
Pa,b,c,... is the parity bit for data bits at a,b,c,...
Examples:
DATA 3 5 6 7 P<sub>3,5,7</sub> P<sub>3,6,7</sub> P<sub>5,6,7</sub> HAMMING CODE
    0 1 0 0 1 0 0 1 1 0 0 1 1 0 0
    1011 0 1 0 0110011
```