Chapter 12

Priority Queues

A queue that efficiently sorts as data is inserted!

Subsections of Priority Queues

Introduction

YouTube Video

The next data structure we will cover is heaps. The heaps discussed in this course are not to be confused with heaps which refer to garbage collection in certain coding languages. Heaps are good for situations were we will need to frequently access and update the highest (or lowest) priority item in a set. For example, heaps are a good data structure to use in Prim’s algorithm. In Prim’s algorithm, we repeatedly got the smallest edge, removed the smallest edge, and then added to and sorted the list of edges.

Heap Properties

A heap is an array which we can view as an unsorted binary tree. This tree must have the following properties:

  1. Each node has at most two children.
  2. If there are nodes in level i of the tree, then level i-1 is full. Below we have an example of how this property has been broken. Level two is not full but there are nodes on level three.
  3. The nodes of the last level are as far left as possible. Below we have an example of how this property has been broken.

Info

As a consequence of the above properties, the following is true as well: Only one node can have one child, all other nodes will have zero or two children. Try to construct a counterexample to see what we mean!

Types of Heaps

There are two main types of heaps, the max-heap and the min-heap. Depending on the element we want to access we may use one or the other.

A max-heap is a heap such that the parent node is greater than or equal to the children. For example, if we are using a heap to track work flow,we would want to use a max-heap. In this case, the highest priority element will always be the root of the tree.

A min-heap is a heap such that the parent node is less than or equal to the children. This is the opposite of the max-heap. The root of this heap will be the item with the lowest priority. A min-heap may feel unnatural at first, however, this is ideal for greedy algorithms such as Prim’s algorithm. We are frequently getting the smallest edge.

Node Relationships

YouTube Video

Heaps can be viewed in two forms: as a tree or as an array. We will use the array style in code but we can have the tree structure in the back of our mind to help understand the order of the data. Here is an example of the heap as a tree on the left and the heap as an array on the right.

The root of the heap will always be the first element. Then we can base the numbering of the following nodes from left to right and top to bottom. For example, the left child of the root will be the second entry and the right child will be the third.

Accessing Indices

For full functionality of our heap, we want to be able to easily determine the parent of a node as well as the children of a node.

Critical Thinking

Using just the array, how can we determine the parent of a node? In the example above, how can we determine the parent of the node with value 18?

We can formulate the relationships between parent and children nodes mathematically. For a node at index i, we can say that the left child of i will be at index 2i and the right child will be at 2i+1. Similarly, we can say that the parent of node i will be at index floor(i/2).

Info

The function floor(x) like in floor(i/2) will round decimal values down to the next whole number. Some examples:

  • floor(3.2)=3
  • floor(1.9999)=1
  • floor(4)=4

Node Parent Left Child Right Child
i floor(i/2) 2i 2i + 1
1 N/A 2*1=2 2*1+1=3
2 floor(2/2)=1 2*2=4 2*2+1=5
3 floor(3/2)=1 2*3=6 2*3+1=7
4 floor(4/2)=2 2*4=8 2*4+1=9
5 floor(5/2)=2 2*5=10 2*5+1=11

Try It!

Consider the following example and try to work some out for yourself.

For example, if we ask for the parent of the node with value 27, our answer would be the node with value 35 The node with value 27 has index 5. Thus, the parent of that node will have index floor(5/2)=2. Node 35 is at index two, as such, node 35 is the parent of node 27.

The node with value three. Node 24 has index 4, so the left child will be at index 2*4=8. That corresponds to the node with value 3.

The node with value twelve. Node 44 has index 3, so the right child will be at index (2*3)+1=7. That corresponds to the node with value 12.

The node with value forty-four. Node 36 has index 6, so the parent will be at index floor(6/2)=3. That corresponds to the node with value 44.

Info

In a heap where n is the size of heap, the elements floor(n/2)+1 through n will always be leaves. If we assume that we have just the 12 elements in this example, then based on this formula, elements 7 through 12 must be leaves. We can verify this in the tree representation!

Priority Queues

YouTube Video

A natural implementation of heaps is priority queues.

A priority queue is a data structure which contains elements and each element has an associated key value. The key for an element corresponds to its importance. In real world applications, these can be used for prioritizing work tickets, emails, and much more.

We can use a heap to organize this data for us.

As with heaps, we can have min-priority queues and max-priority queues. For the applications listed above, a max-priority queue is the most intuitive choice. For this course however, we will focus more on min-priority queues which will give us better functionality for greedy algorithms, like Prim’s algorithm.

Prim’s Revisited

For the minimum spanning tree algorithms, using a min-priority queue helps the performance of the algorithms. Recall Prim’s algorithm, shown below. Each time we visited a new node, we would add the outgoing edges to the list of available edges, remove the smallest edge, and sort the list.

function PRIM(GRAPH, SRC)
    MST = GRAPH without the edges attribute(s)
    VISITED = empty set
    add SRC to VISITED
    AVAILEDGES = list of edges where SRC is the source
    sort AVAILEDGES
    while VISITED is not all of the nodes
        SMLEDGE = smallest edge in AVAILEDGES
        SRC = source of SMLEDGE
        TAR = target of SMLEDGE
        if TAR not in VISITED
            add SMLEDGE to MST as undirected edge
            add TAR to VISITED
            add the edges where TAR is the source to AVAILEDGES
        remove SMLEDGE from AVAILEDGES
        sort AVAILEDGES
    return MST

If we implement Prim’s algorithm with min-priority queue, we don’t have to worry about sorting the edges every time we add or remove one.

function PRIM(GRAPH, SRC)
    MST = GRAPH without the edges attribute(s)
    VISITED = empty set
    add SRC to VISITED
    AVAILEDGES = min-PQ of edges where SRC is the source
    while VISITED is not all of the nodes
        SMLEDGE = smallest edge in AVAILEDGES
        SRC = source of SMLEDGE
        TAR = target of SMLEDGE
        if TAR not in VISITED
            add SMLEDGE to MST as undirected edge
            add TAR to VISITED
            add the edges where TAR is the source to AVAILEDGES
        remove SMLEDGE from AVAILEDGES
    return MST

Dijkstras

YouTube Video

Video Slides

A good application of priority queues is finding the shortest path in a graph. A common algorithm for this is Dijkstra’s algorithm.

Edsger Dijkstra was a Dutch computer scientist who researched many fields. He is credited for his work in physics, programming, software engineering, and as a systems scientist. His motivation for this algorithm in particular was to be able to find the shortest path between two cities.

Note

What is the shortest way to travel from Rotterdam to Groningen, in general: from given city to given city? It is the algorithm for the shortest path, which I designed in about twenty minutes. One morning I was shopping in Amsterdam with my young fiancée, and tired, we sat down on the café terrace to drink a cup of coffee and I was just thinking about whether I could do this, and I then designed the algorithm for the shortest path. - Edsger Dijkstra, Communications of the ACM 53 (8), 2001.

His original algorithm was defined for a path between two specific cities. Since its publication, modifications have been made to the algorithm to find the shortest path to every node given a source node.

DIJKSTRAS(GRAPH, SRC)
    SIZE = size of GRAPH
    DISTS = array with length equal to SIZE
    PREVIOUS = array with length equal to SIZE
    set all of the entries in PREVIOUS to none
    set all of the entries in DISTS to infinity 

    DISTS[SRC] = 0 
    PQ = min-priority queue

    loop IDX starting at 0 up to SIZE
        insert (DISTS[IDX],IDX) into PQ

    while PQ is not empty
        MIN = REMOVE-MIN from PQ
        for NODE in neighbors of MIN
            WEIGHT = graph weight between MIN and NODE
            CALC = DISTS[MIN] + WEIGHT
            if CALC < DISTS[NODE]
                DISTS[NODE] = CALC
                PREVIOUS[NODE] = MIN
                PQIDX = index of NODE in PQ
                PQ decrease-key (PQIDX, CALC)
    return DISTS and PREVIOUS

Animated demo of Dijkstras Algorithm Animated demo of Dijkstras Algorithm1

Aside from just finding routes for us to travel, Dijkstra’s algorithm can accommodate for any application that can have an abstraction to finding the shortest path. For example, the following animation shows how a robot could utilize Dijkstra’s algorithm to find the shortest path with an obstacle in the way. In this example, each node could represent one square foot of floor space and the edges would represent those spaces that are adjacent. In this scenario, we would most likely not have an associated edge weight. If the robot were traversing on a rugged terrain, then we could have the weights represent the difficultly of passing through the terrain from one space to the other.

Robot Path Mapping Robot Path Mapping2

Another practical abstraction is in network routing. In this simplified abstraction, nodes would be routers or switches and the edges would be the physical links between them. The edge weights in this case would be the cost of sending a packet from one router to the next. Dijkstra’s algorithm is actively used in protocols such as Intermediate System to Intermediate System (IS-IS) and Open Shortest Path First (OSPF).