# Summary 1

This page will be devoted to summarizing our performance discussions. Below, we have included a graph for a frame of reference for the various functions.

### Generic Trees

In the following, $n$ denotes the number of nodes in the tree.

**Insert**: 1 if we have the parent but $n$ if we have to find the parent**Access**: 1 if we want to access the root but $n$ otherwise**Find**: $n$**Delete**: $n$ if we have to find the parent**Memory**: $n$

### Tries

In the following, $m$ denotes the length of a word and $n$ denotes the number of words in the trie.

**Insert**: $m$**Access**: $m$**Find**: $m$**Delete**: $m$**Memory**: $n\times m$

### Binary Trees

In the following, $n$ denotes the number of nodes in the tree.

**Insert**: $log_2(n)$ when balanced but $n$ otherwise**Access**: $log_2(n)$ when balanced but $n$ otherwise**Find**: $log_2(n)$ when balanced but $n$ otherwise**Delete**: $log_2(n)$ when balanced but $n$ otherwise**Memory**: $n$

### Matrix Graph

In the following, $n$ denotes the number of nodes in the graph.

**Insert Node**: $n$**Access Node**: 1**Find Node**: $n$**Delete Node**: $n$**Insert Edge**: 1**Access Edge**: 1**Find Neighbors**: $n$**Delete Edge**: 1**Memory**: $n^2$

### List Graph

In the following, $n$ denotes the number of nodes in the graph and $e$ denotes the number of edges.

**Insert Node**: $n$**Access Node**: 1**Find Node**: $n$**Delete Node**: $n$**Insert Edge**: $n$**Access Edge**: $n$**Find Neighbors**: 1**Delete Edge**: $n$**Memory**: $n+e$

### Priority Queue

In the following, $n$ denotes the number of elements in the priority queue.

**Insert**: $log_2(n)$**Access Minimum**: 1**Find**: $n$**Remove Minimum**: $log_2(n)$**Heapify**: $n$**Memory**: $n$