Algorithms

Department of Computer Science

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.</u> See <u>License & Attribution</u> for details.

How do you Shuffle Cards?

- What items do you need?
- What tools do you need?
- What skills do you need?
- What prior knowledge do you need?

al - khwarithmi

- Abu Abdallah Muhammad ibn Musa al-Khwarizmi
 - Latin nickname Algorithmi
- Wrote many books for solutions to linear and quadratic equations
- These transformed over the years into algorithms

Video <u>link</u>

Algorithm

A finite list of specific instructions for carrying out a procedure or solving a problem

Euclid

- Greek mathematician from 300
 BC
- Discovered a simple way to calculate the greatest common divisor
 - Used to reduce fractions

Euclid's Algorithm (GCD)

- 1. Start with 2 numbers, A and B
- 2. If either one is zero, the answer is the other number
- 3. Subtract the smaller number from the larger number
- 4. Repeat steps 2-4 until answer is found

Example: GCD of 1071 & 462

- 1071, 462
- 609, 462
- 147, 462
- 147, 315
- 147, 168
- 147, 21
- 126, 21

KANSAS STATE

- 105, 21
- 84, 21
- 63, 21
- 42, 21
- 21, 21
- 21,0
- <u>21</u>

Sorting

Sorting Algorithms

- Insertion Sort
- Bubble Sort
- Merge Sort
- Quicksort

Insertion Sort

6 5 3 1 8 7 2 4

By Swfung8 - Own work, CC BY-SA 3.0, link

- 1. Choose an element from the source
- 2. Place it in the correct place in destination
- 3. Repeat until source is empty

KANSAS STATE

Bubble Sort

- 1. Compare the first two elements
- 2. If they are out of order, swap them
- 3. Move one element over and repeat
- 4. When the end is reached, start over
- 5. Continue until no more swaps are made

By Swfung8 - Own work, CC BY-SA 3.0, link

Big O Notation

- Expresses the complexity of an algorithm
- Approximates the number of steps needed based on the size of the input
- Worst-case scenario

Bubble Sort – Worst Case

- 3, 2, 5, 4, 7, 6, 9, 8, J, 10, K, Q, A <u>6</u>
- A, 2, K, 3, Q, 4, J, 5, 10, 6, 9, 7, 8 <u>42</u>
- A, Q, K, 10, J, 8, 9, 6, 7, 4, 5, 3, 2 <u>73</u>
- A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2 <u>78</u>
- 2, 4, 6, 8, 10, Q, A, 3, 5, 7, 9, J, K <u>21</u>

Bubble Sort – Worst Case

Sorting Algorithms

- Insertion Sort O(n²)
- Bubble Sort O(n²)
- Merge Sort
- Quicksort

Merge Sort

- 1. Split the items into two halves
- 2. Repeat step 1 until each has 1 item
- Choose 2 parts and merge them together by choosing the smallest item repeatedly from the front of each part
- 4. Continue merging parts together until no more remain

Kansas State

6 5 3 1 8 7 2 4

Image Source: Wikipedia

Quicksort

- Choose an item from the list as a "pivot"
- 2. Put all items less than that item to its left, and put all items greater to its right
- 3. Repeat these steps for the items on each side of the pivot.

Image Source: Wikipedia

Sorting Algorithms

- Insertion Sort O(n²)
- Bubble Sort O(n²)
- Merge Sort O(n log n)
- Quicksort O(n²) avg. O(n log n)

What is a Heuristic?

Using experience based technique to find a satisfactory solution to a problem (which may or may not be the absolute best solution

Everyday Heuristics

- Rule of Thumb
- Educated Guess
- Common Sense
- Try something and work backwards
- Do a simpler problem first

mage Source: Wikipedia

Traveling Salesman Problem

Image Source: Wikipedia

Department of Computer Science

KANSAS STATE

VERS

UN

Traveling Salesman Problem - Algorithms

- Brute Force O(n!)
 - Easy & Cheap, but not fast
 - 8 cities = 40320 steps
- Dynamic Programming O(2ⁿ)
 - Faster, but not easy or cheap
 - 8 cities = 256 steps

Traveling Salesman Problem: Heuristic

Nearest Neighbor (Greedy Algorithm)

- Pick any city (we'll use B)
- Go to the closest city you haven't been to yet
- From that city, repeat this process until all cities have been visited

Greedy Solution: 67 miles

Traveling Salesman Problem: Heuristic

Nearest Neighbor (Greedy Algorithm) - O(d n)

- d is the number of dimensions
- n is the number of cities
- 8 cities = 16 steps (assuming 2D maps)

Time can vary widely based on how the data is presented and sorted

Optimal Solution: 62 miles

mage Source: Wikipedia

