Embedded Systems, Computer Architecture, \& Finite State Machines

Tyranny of Numbers

For some time now, electronic man has known how 'in principle' to extend greatly his visual, tactile, and mental abilities through the digital transmission and processing of all kinds of information. However, all these functions suffer from what has been called 'the tyranny of numbers.' Such systems, because of their complex digital nature, require hundreds, thousands, and sometimes tens of thousands of electron devices.
-Jack Morton - 1957
VP of Bell Labs

Jack Kilby

- Grew up in Great Bend, KS
- 1958 - Hired by Texas Instruments as an Electrical Engineer
- Worked to solve the "tyranny of numbers" problem
- Concluded components of a circuit could be made directly on a price of semiconductor material

https://www.youtube.com/watch?time continue=6\&v=62JMBnT2HUc

First Integrated Circuit

Robert Noyce

- Worked at Fairchild Semiconductor
- Made an integrated circuit made of silicon
- Overcame some of the flaws of Kilby's design independently
- Left Fairchild Semi conductor with Gordon Moore to create a new company

Intel Founders

- Noyce and Moore founded Intel in 1968
- Focus on creation and manufacture of new integrated circuits and semi conductors

Moore's Law

Microprocessor Transistor Counts 1971-2011 \& Moore's Law

- "Cramming More Circuits onto Integrated Components" - 1965
- Circuits on chips double every year for another 10 years

Intel 4004

- First ever Central Processing Unit (CPU)
- Had 2,300 transistors, but it was the size of a small finger
- Circuits were 10 times smaller than human hair

Microcontrollers

- Include everything a device needs to think and function
- How do we make electronic machines that react to input from the real world?

Fixed Program Computers

John Von Neumann

- Research involved in the Manhattan project
- Inspired by Alan Turing - As well as the EDVAC
- Work was leading the direction to storing logic alongside data

Stored Program Computers

- Computer program can be stored in the same memory as the program data
- No need to have separate parts for each
- Treats programs as data

MergeSort Binary Code
Item1
Item2
Item3
Item4
Add Binary Code
Item1
Item2

Von Neumann Architecture

System Bus

Computer Memory Hierarchy

Kansas States $\overline{\mathbf{U} \mathbf{N} \mathbf{V E R S I T} \mathbf{R}}$ Department of Computer Science

Instruction Set Architecture (ISA)

- x86
- x86-64
- IA64 (Itanium)
- ARM
- PowerPC
- MIPS

Motherboard

- CPU Socket
- Memory Slots
- Northbridge
- Southbridge
- Onboard GPU and Sound
- Expansion slots

Central Processing Unit (CPU)

- Architecture
- Clock speed
- Cache memory
- Processing cores

Memory

- Size
- Speed
- Type/class
- ECC
- Registered

Storage

- Capacity
- Interface
- Spindle Speed (HDD)
- Read speed
- Write speed
- Latency
- Raid
- 0: striping, 1: mirroring, 5: striping + parity, 10: mirror + striping

And More!

- Optical Disk Drive (ODD)
- Graphics Card
- Sound Card
- Wireless Card
- Network Card
- Power Supply (PSU)
-

How can we represent the way real-world systems operate using a computer?

Finite State Machine

- Device that has a limited number of states
- Can change based on inputs
- Used in many real world applications

1. Elevator Control System
2. Stoplight
3. Baseball At-bat
4. Starting a Car
5. Pinball Machine
6. Store Self-Checkout
7. ATM Withdrawal
8. Keypad Security Lock
9. Paper-Rock-Scissors Game
10. Changing a Tire
11. 2 Player Texas Hold-em Poker
12. A DVD Player
