

Department of Computer Science

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.</u> See <u>License & Attribution</u> for details.

Cryptography

- Study of ways to communicate securely and privately in the presence of third parties
- Charles Babbage, Edgar Allan Poe, Alan Turing, and Claude Shannon were all involved in cryptography.

Message to the Class

TSTEPHAAXLISLAESCEMQIYQ

Department of Computer Science

Scytale

Department of Computer Science

Message to the Class

TSTEPHAAXLISLAESCEMQIYQ S S М

Department of Computer Science

Early Ciphers

- Substitution Ciphers
 - Cryptoquip Easily Breakable
- Polyalphabetic Ciphers
 - First described by Al-Kindi in the 9th century
 - Later explained by Leon Battista Alberti in 1467

Tabula Recta

ABCDEFGHIJKLMNOPQRSTUVWXYZ A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B DDEFGH IJKLMNOPQRSTUVWX BC EEFGHI J K L M N O P Q R S T U V W X Y Z B CD F F G H I J K L M N O P Q R S T U V W X Y Z A DE В GGHIJ K L M N O P Q R S T U V W X Y EF ZAB H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G IJKLMNOPQRSTUVWXY ZABCDEFGH JJKLMNOPQRSTUVWXY в CDEFGHI K K L M N O P Q R S T U V W X Y Z A B CDEFGHI LLMNOPQRSTUVWXYZAB CDEFGHIIK M M N O P Q R S T U V W X Y ZABCDEFGHI KL NNOPQRSTUVWXY BCDEFGHIJKLM 0 0 P Q R S T U V W X Y Z A Е FGHIJKLMN BCD PPQRSTUVWXYZ CDEFGHIJKLMNO в QQRSTUVWXYZAB CDEFGHIJKLMNOP RRSTUVWXYZA FG IKLM В CD Е NOPQ н SSTUVWXYZ ABCDE FGH JKLMNOPQR TTUVWXYZABCDEF GHIJKLMNO PORS UUVWXYZABCD EFGHIJKLM NOPQRST V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U WWXYZABCDEFGHI JKLMNOPQRSTUV X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X ZZABCDEFGHIJKLMNOPQRSTUVWXY

Department of Computer Science

Image Source: <u>Wikipedia</u>

Encrypting with Enigma

Enigma Machine

- Encoded messages during WWII
- Used several rotors to create a key for encryption
- Board for inputs

Enigma Machine Rotors

Department of Computer Science

Enigma Machine Rotors

Department of Computer Science

Enigma Machine Ratchet

Department of Computer Science

Image Source: <u>Wikipedia</u>

Enigma Machine Plugboard

Department of Computer Science

Enigma Key

- Choice and order of rotors
- Initial position of rotors
- Ring setting on rotors
- Plug connections

Enigma Operation

- Set wheels to today's key from codebook
- Operator chooses message key
- Encode message key TWICE to avoid errors
- Set wheels to message key
- Encrypt and send message

Enigma Strengths

- Many factors to the encryption
- Had up to 8 different wheels to choose from by the end of the war
- 150 Trillion different setups from just the plugboard!
- All together, over 158 quintillion

Enigma Weaknesses

- A letter would never encrypt to itself
- Plugboards were reciprocal
- Wheels were not similar enough (could determine which wheels were used)
- Poor policies and procedures

Decrypting with Enigma

Marian Rejewski

- Polish mathematician who worked on the Enigma machine
- 1920s-1930s, Poland was under threat from Germany
- Eventually replicated the German machines

KANSAS STATE

Department of Computer Science

Cracking Enigma

- 1932 First cracked by Marian Rejewski of Poland
- 1938 Germany added 2 wheels
- 1939 Alan Turing creates Bombe
- 1945 Almost every message deciphered within 2 days

Bombe

- Developed by Alan Turing to simulate enigma machines
- Exploited many of the weaknesses and other facts

Impact

"My own conclusion is that it shortened the war by not less than two years and probably by four years ... we wouldn't in fact have been able to do the Normandy Landings, even if we had left the Mediterranean aside, until at the earliest 1946, probably a bit later."

-Sir Harry Hinsley British Intelligence Historian

Claude Shannon

The Father of Information Theory

Department of Computer Science

Symmetric Key Encryption

Public Key Encryption

Source: <u>Askamathematician.com</u>

RSA Encryption

- Developed in 1977
- Named for the 3 creators (Ron Rivest, Adi Shamir, Leonard Adleman)
- Uses the product of 2 large prime numbers to generate a key
- Key strength depends on the difficulty of factoring large numbers

RSA Example

- Choose 2 distinct prime numbers
 p and *q*
- Compute their product *n* = *pq*
- Compute the totient *t* of *n*:
 - t = (p 1)(q 1)

RSA Example

- Choose any number *e* less than *t* that is coprime to *t* (they share no common factors but 1)
- Calculate *d* as the modular multiplicative inverse of *e* (mod *t*)
 e * *x* = 1 (mod *t*)

RSA Keys

- Public Key : (*n*, *e*)
- Encode: $c = m^e \pmod{n}$

- Private Key : (*n*, *d*)
- Decode: $m = c^d \pmod{n}$

